
Documenting

 Software
 C, C++ and Java

from GUI to API
by John Darrow

See http://www.phoons.com/john/classes/aboutbook.html

DOCUMENTING JAVA AND C++

ii

Copyright 2003 John E. Darrow

iii

Preface
How this book is organized

The chapters of this book are organized into these major parts:

Part 1, “Introduction”, page 15

An overview of who this book is for, what kinds of documents software
technical writers create, and how to communicate with "generalized syntax."

Part 2, “Programming concepts”, page 49

A detailed presentation of the programming concepts fundamental to most
software topics that you will document, beginning at the most basic level.

Part 3, “Creating documentation”, page 153

Instructions on how to create various kinds of software documentation.

Part 4, “Backmatter”, page 227

Sample code, advanced topics, a glossary, and answers to exercises.

Conventions

Throughout this book, I use the style of writing detailed in "Generalized syntax
expressions" on page 31. For a summary, see page 33.

Other books, courses and services

See http://www.phoons.com/john/

DOCUMENTING JAVA AND C++

iv

v

Table of contents

Preface iii
How this book is organized . iii
Conventions . iii
Other books, courses and services . iii

PART 1—INTRODUCTION

1 With the technical writer in mind 17
The need for software technical writers .17
Reasons to read this book .18
Skip the programming books .18
Job listings and interviews .19
Background you should have .20
Objectives .21
The importance of various topics .21
Book recommendations .22

2 Common software documentation tasks 23
Terminology .23
Software products and their documentation .25

Basic computer programs .25
Extendable software .26
Applets. .27

DOCUMENTING JAVA AND C++

vi

Knowing your audience .28

3 Generalized syntax expressions 31
A writing convention, not programming .31
An example of generalized syntax .32
The symbols of generalized syntax. .33
Replace this placeholder with your own value .33

Reverse engineering .35
EXERCISES—PLACEHOLDERS . 36

It is up to you whether you supply the item .37
EXERCISES—OPTIONAL PART. 39

Choose one of these .40
Breaking a complex expression into subexpressions 41
EXERCISES—CHOICES. 42

The item can be repeated .43
EXERCISE—REPEATABLE . 44

The optional item can be repeated .44
EXERCISE—REPEATABLE OPTIONAL PART 46

Summary. .46
EXERCISES—SUMMARY . 47

PART 2—PROGRAMMING CONCEPTS

4 Background 51
From source code to executable .51

Source code .51
Compiling .52
Bytecode, executables and library files .52
Machine-dependent or not? .52
Virtual Machine. .53
Definitions .53

Common elements of programs .53
Comments .53
Expressions .56

5 Datatypes and data structures 59
Datatypes .60

Primitive datatypes .60
Declaring a variable .65

A datatype and a name. .65
Naming conventions .66

vii

Declaration styles .66
Variables and memory. .66
EXERCISE—DATATYPE AND NAME . 67

Assigning values to variables .67
Data structures .69

The need for data structures. .69
Arrays—an introduction .70
EXERCISES—ARRAYS . 71
Structs .72
EXERCISES—STRUCTS . 73
Classes .73
EXERCISE—CLASSES . 74
Data structures using datatypes .74
Typedefs .75
EXERCISE—CHOOSING A DATATYPE . 76

Pointers .76
Introduction .77
Pointers to pointers .77
Pointers as another datatype .77
Placement of the asterisk .77

6 Object-oriented programming 79
Programming languages .80

C++ .80
Java .80

Definition .80
Identifying objects .81
Class versus instance .83
Members of a class .85

EXERCISE—RECOGNIZING MEMBERS . 86
Identifying a class’s variables. .86
Identifying a class’s methods or functions .88

EXERCISE—IDENTIFYING VARIABLES AND METHODS. 89
Declaration versus use .89
Access control. .90
Inheritance .90

EXERCISE—INHERITANCE. 92
Overloading .92

7 Syntax 93
Syntax and pattern recognition .94
Class declaration .94

DOCUMENTING JAVA AND C++

viii

Basic syntax and pattern recognition .94
Inheritance and implementation .95
EXERCISE—RECOGNIZING CLASSES . 97

Constructor declaration. .97
Syntax .97
Pattern recognition. .98
Examples .99
Default constructor .101

Destructor declaration. .105
Syntax and pattern recognition .105

Variable declaration .106
Pattern recognition—primitives and simple instances 106
ACTIVITY —IDENTIFYING PRIMITIVES AND SIMPLE INSTANCES . 107
Pattern recognition—arrays. .108
Pattern recognition—pointers .108
Summary examples .109

Instance creation .110
The problem with C++ instances. .110
Instance creation in Java .111
Instance creation in C++ .113
EXERCISE—RECOGNIZING C++ INSTANCES 114

Method and function key concepts .114
Parts of a method or function declaration—concepts115
Examples .116
EXERCISE—RECOGNIZING PARTS OF A METHOD OR FUNCTION . 117

Method and function declaration .118
Syntax .118
Terminology .119
Pattern recognition. .120
Examples .120
Good news for the technical writer .121
ACTIVITY —IDENTIFYING PARTS OF A METHOD OR FUNCTION . . 122
ACTIVITY —DECLARING METHODS OR FUNCTIONS. 123
EXERCISES—DECLARING METHODS OR FUNCTIONS. 123
Functions declared in two places?. .123

Nested class declaration .124
Summary: distinguishing members of a class. .124

EXERCISES—IDENTIFYING MEMBERS . 127

8 Modifiers 129
public, protected and private. .130

ix

Recognizing the modifiers. .130
The general meaning of the modifiers. .131

static .132
Definition and illustration .132
The impact of static on member access .134
Terminology .134

final and const. .135
Variables .135
Constants and naming convention. .135
Methods, functions and classes .136

abstract .136
The purpose of abstract classes .136
The Java keyword .137

virtual .137

9 Interfaces 139
Pattern recognition .139
Syntax .140

Syntax of a class that implements an interface140
Syntax of an interface that extends an interface 140

Before you read too far .140
The basic concept of an interface .141
An interface example .142
Other relationships .144

10 Package topics 145
Introduction. .145
package .146
import .147
CLASSPATH .148

Definition. .148
Possible contents of CLASSPATH .149
Setting CLASSPATH .149

API documentation .150
package and import .150
CLASSPATH .151
EXERCISES—PACKAGE TOPICS. 151

DOCUMENTING JAVA AND C++

x

PART 3—CREATING DOCUMENTATION

11 Documenting a graphical user interface 155
Introduction. .155
Variations in style .156
Components of how-to documentation. .157
An instructional style .157

Structure. .158
Example .158
Observations .159

12 Documenting a program’s command line syntax 161
Introduction. .161
Components .162
Sample documentation .162
Checklist for your developer interviews. .165
A general rule .167
Dealing with repeating groups of terms .167

EXERCISES—DOCUMENTING COMMANDS. 168

13 Documenting an Applet 171
Introduction. .171
Applet tag properties. .172
The writing task .173

14 Documenting the API of software 175
The essential elements for a programming audience176
Gathering information. .177

Reviewing the code .177
Questions for the developer. .177
Dealing with descriptions .178
About header files (C and C++ only) .179
About javadoc and doxygen .180

Document design .181
Design .181
Details before summaries .181
Notation .182

API documentation template .182
Introducing a chapter .184

Required elements .184
Style .184
Example .184

xi

Introducing a class or interface. .185
Required elements .185
Style .185
Examples .186

Documenting a variable declaration .186
Required elements .187
Style .187
The [H2] for variables .188
Example .188
Issues of variables versus constants. .189
Arrays and instances of classes .189
EXERCISE—DOCUMENTING VARIABLE DECLARATIONS 190

Documenting a method or function declaration .191
Required elements .191
Style .191
The "shortened heading" format .193
EXERCISE—SHORTENED HEADINGS . 194
About the return type. .195
The [H2] for methods or functions .195
EXERCISES—METHODS AND FUNCTIONS 195

Documenting a constructor declaration .196
Required elements .196
Style .196
Default constructor .197
Private constructors .197
Interfaces and constructors (Java only) .198
EXERCISE—CONSTRUCTORS. 198

Documenting a destructor declaration (C++ only)200
Required elements .200
Style .200
Sample documentation .200

Documenting a nested class .201
Required elements .201
Style .202
Example .203

About summary sections. .204
Variable summary. .204

Required elements .204
Styles .205

Method or function summary .206
Required elements .206

DOCUMENTING JAVA AND C++

xii

Styles .206
Constructor summary .207

Required elements .207
Styles .208

Destructor summary .209
Nested class summary. .209

Required elements .209
Style .209
Example .209
EXERCISES—SUMMARY SECTIONS . 210
EXERCISES—COMPLETE API DOCUMENTATION. 210

About code samples .212
Creating an instance of a class. .212
Using an individual method or function .212
Accomplishing a larger task with several methods or functions.213
Implementing a Java interface. .213

Documenting functions that are not members of classes213
EXERCISE—FUNCTIONS THAT ARE NOT MEMBERS. 214

15 Improving the readability of code samples 215
Introduction. .215
Indentation style .217

Competing styles .217
Indentation—a picture .219
About spaces .221
ACTIVITY —INDENTATION. 222
Indentation—a line-by-line approach .222
Effective use of blank lines .223
EXERCISE—INDENTATION. 223

About comments .223
Location .223
Spelling and grammar .223

Splitting long lines .224
Splitting comments .224
EXERCISE—SPLITTING COMMENTS. 224
Splitting non-quoted code lines .224
EXERCISE—SPLITTING CODE LINES . 225
Splitting quoted code lines (Java only) .225
EXERCISE—SPLITTING STRINGS. 226
EXERCISE—CODE SAMPLES . 226

xiii

PART 4—BACKMATTER

A Sample documentation 229
Style of author 1 .229
Style of author 2 .231
Style of author 3 .232
My style .235

B Sample Java code 237
Widget.java .237
PointFigure.java .238
Position.java .242
Card.java. .243
Deck.java .250

C Sample C++ code 253
Widget.cpp .253
CarGrp.cpp .254
sample1.cpp .255
sample2.cpp .259
sample3.cpp .267

D Advanced discussion 277
Declaring versus using a method or function .278

Scenario .278
About the argument names .278
Returning a value from a method or function .279
Changing the declaration of a method or function 281
Usage—an example. .282
More about the return keyword .282
EXERCISE—DECLARING A METHOD . 283

Creating and using an instance .283
The syntax for referring to an instance’s member 283

EXERCISES—REFERRING TO MEMBERS OF INSTANCES. 284
Java access modifiers: a precise view. .285
Arrays .287

EXERCISES—ARRAYS . 288
enums (C++ only) .288
Templates (C++ only). .288
Java Archive files .289

DOCUMENTING JAVA AND C++

xiv

Interpreting complex expressions .289

E Glossary 293

F Answers to exercises 297

15

PART 1
Introduction

• “With the technical writer in mind,” page 17

If you are interested in becoming a software technical writer, this book is for
you. Have you considered the benefits? What will you say in an interview?

• “Common software documentation tasks,” page 23

This chapter discusses the kinds of documentation you might create as a
software technical writer.

• “Generalized syntax expressions,” page 31

This is a symbolic style of writing. Learn it and benefit from using it in
many forms of communication with programmers. Instruction in this book
also depends on your understanding generalized syntax expressions.

DOCUMENTING JAVA AND C++

16

17

1

With the technical
writer in mind

In this chapter:

• “The need for software technical writers,” page 17
• “Reasons to read this book,” page 18
• “Skip the programming books,” page 18
• “Job listings and interviews,” page 19
• “Background you should have,” page 20
• “Objectives,” page 21
• “The importance of various topics,” page 21
• “Book recommendations,” page 22

The need for software technical writers
Let’s get this straight: I’m not talking about writers who can document how to
use software—there are far too many writers who can do that.

DOCUMENTING JAVA AND C++

18

The need is far greater for writers who are able to extract such information on
their own directly from the source code and know how to present it effectively in
documentation. Can you find the gems in source code? Do you know what such
documentation needs to look like? Do you know what questions to ask a
programmer? What are you doing to head in that direction?

Reasons to read this book
Are any of the following true about you?

• You are curious about the field of software technical writing.
• You are surrounded by those who use programming terminology and you

would rather follow along than look and feel lost. You want to be able to
communicate better in the language of programmers.

• You want to avoid asking what might be perceived by a programmer as
"stupid questions" and have confidence about what you can ask.

• You want a better grasp of the basic concepts and principles of object-
oriented programming without having to be a programmer.

• You want the ability to recognize programming expressions in source code
and extract as much information as possible directly from the code
without annoying the programmer.

• Your company has assigned you a job of documenting software or you
want to pursue such a job.

• You want to be able to demonstrate that you know what kind of
information is needed by a programming audience and that you can write
effectively for such an audience.

• You want to take advantage of the great need (and higher pay) for API
writers.

Skip the programming books
Many years ago, a coworker stepped into my office and wanted to learn how to
do what I was doing—documenting software. He mentioned several books he’d
seen at the book store and asked where he should start. I laughed. All of the
books he mentioned were about programming and were written by programmers
for programmers. (Does that sounds like your journey, too?)

19

With the technical writer in mind1
Job listings and interviews

That discussion got me thinking. What knowledge would he need to have? Well
combination of programming and technical writing knowledge did I have that
enabled me to skim through source code, pick out the gems and document them
effectively? I knew that he didn’t need to be a programmer to do this stuff. I
developed a course on the topic and this book flowed out of the course.

What I believe you need to learn most is how to create software documentation.
Sure, you need to learn some programming, but only that which supports the
primary goal: learning how to create software documentation. To that end, my
focus is on this: pattern recognition and a basic understanding of the concepts
behind those patterns. In the end, you will see that creating API reference
documention is actually quite simple, once you know how to find the handful of
items in source code that need to be documented.

Job listings and interviews
It is not uncommon for a manager to be delegated a software project that
includes an aspect with which the manager is not familiar: the need for API
documentation. The manager might not know what kinds of skills to seek in
prospective technical writers. Should the manager seek writers who know how to
read and write code? Perhaps a fellow programming manager imposed that
requirement, believing that such skills are a "must" for creating API reference
documentation.

I am glad to regularly see managers in my API documentation courses. They
want to get an accurate picture of what it means to create API documentation and
see what skills are really needed. I assert that what managers need most are
writers who understand certain fundamental programming concepts and source
code patterns and can extract necessary information directly from the source
code and create a significant portion of the API reference documentation without
ever bothering the programmers.

Imagine how impressed the programmer would be to see you show up with a
first draft document that shows a detailed, organized presentation of the public
variables, methods, functions and constructors of a Java or C++ class. I think the
programmer would be more than willing to help provide the descriptions you
need for the members you have so effectively identified and presented. In
constrast, a writer who has little idea where to begin will have little to no future
in this business.

DOCUMENTING JAVA AND C++

20

Let’s say you go to an interview for a job whose posting says "read and write
code." I believe the best position for you to be in is to know what needs to
appear in API reference documentation and to be able to articulate that. You
might be asked, "Can you tell me what this code sample does?" With the
knowledge you can gain from this book, you could confidently counter, "I know
that API reference documentation needs to help the reader learn about the public
members of a class. I can look through source code and identify a class’s
members—for example, its variables, methods and constructors. And I know
how to present that information effectively in documentation so that the reader
can quickly find a particular method or function description and know what kind
of information it needs to do its job and what it gives back as a result. If your
company does not yet have a style for API reference documentation, I would like
to get the company off to an excellent start." Isn’t that what managers want most,
someone who knows what needs to be done and knows how to do it better than
so many other candidates out there who do not have that knowledge?

I have watched students of mine get snatched up for API documentation jobs
soon after class, as managers were anxious to find someone who could
demonstrate that they knew how to run with the company’s software
documentation project.

Equip yourself with the knowledge of this book.

Background you should have
Are you concerned that this book might be too technical for you? Do you think
you might need more background before reading this book?

If you can breathe and are eager to learn some technical details, I consider you
ready for this book! Sure, I have just used unusual phrases like "API reference
docuementation" and "object oriented programming," but don’t worry: I will
carefully walk you through what each of these is. I believe you will enjoy the
ride and be satisfied at the number of technical concepts you will have absorbed
in reading the book—and be excited about your increased job prospects.

I start with the basics and work from there. It has been rewarding to hear
students express their delight at learning fundamental programming concepts that
they wished had been presented in past programming classes. And others have
been excited about a whole new technical world opened up to them that they had
never considered was within their grasp.

21

With the technical writer in mind 1
Objectives

Objectives
Upon completion of this book, you will:

• know what "generalized syntax" is
• know how to use generalized syntax to document a command line

expression
• know what it means to "document a graphical user interface (GUI)" and

"document an applet"
• be able to recognize programming concepts like variables, methods,

functions, constructors, destructors, arguments and inheritance when
looking through source code

• know how to create an effective first draft of API reference documentation
for a programming audience

• know what information needs to be gathered from developers
• know how to reformat code samples

The importance of various topics

Which chapters are most important for you read? Which topics are most
important for you to understand in your pursuit of creating API documentation or
other aspects of software documentation?

You need to be prepared to document various aspects of a software product:

• how to use the program (“Documenting a graphical user interface,” page
155 and “Documenting a program’s command line syntax,” page 161)

• how to use a Java applet in web page (“Documenting an Applet,” page
171)

• how to make use of classes or functions provided by the company
(“Documenting the API of software,” page 175)

You need to:

• understand why API documentation is needed by programmers and what
they will be looking for in your documentation

DOCUMENTING JAVA AND C++

22

To do so, you need knowledge of OO concepts and syntax.

• extract key information about classes, variables, methods, functions,
constructors and destructors from source code

To do so, you need knowledge of OO concepts and syntax.

• interview developers to gather descriptions of members

To do so, you need knowledge of OO concepts and syntax.

Book recommendations
Looking for a good reference book on programming? Having such a book nearby
is not required as you go through this book. However, it often helps to hear the
same concept said in different words. For that reason, you might want to have a
Java reference book nearby.

Rather than highlight any particular book, let me suggest this approach. Go to the
bookstore and grab several Java or C++ tutorial or reference books that appear to
be what you may need. (And check my web site, in case I have completed a book
on introductory Java programming.)

Look in the index of each for the for expression. If you cannot find it in a book,
reject that book. If the author did not provide that simple of a reference, you
can’t count on the author to be of help elsewhere.

Read the descriptions of the for expression in each book. Select the book whose
style of explanation best fits your learning style.

Oh, and beware: Javascript is not Java nor is it related to Java, even though it has
j-a-v-a in its name. (It is a programming language for and unique to web
browsers.) So do not purchase a Javascript book when looking for Java. Also,
beware of books that claim to teach Java but are actually about applets—how to
find applets out there on the internet and make use of them in your web page.
That is about HTML, not about Java.

23

2

Common software
documentation tasks

Your job as a software technical writer is to provide the appropriate
documentation for the software that your company sells. There are different
kinds of documentation for different kinds of software and for different
audiences.

This section introduces you to various kinds of software products that are sold
and notes the documentation that may be fitting for such products.

In this chapter

• “Terminology,” page 23
• “Software products and their documentation,” page 25
• “Knowing your audience,” page 28

Terminology
The user of your company’s product might be a skilled programmer or a low-
skilled button-clicker. Let’s get some terms right before moving forward.

• You

I will assume you are a technical writer (or on your way to becoming one).

DOCUMENTING JAVA AND C++

24

• Your company

I will assume your company sells a software product and your job is to
create documentation related to it in some way.

• Your company’s customer

Rather than try to guess all of the kinds products a company might create
and who might be the target audience, I will state a couple of examples to
illustrate the variety.

Your company’s product might be ready for the low-tech end user to use,
clicking buttons and selecting menu items. Or it might be software that the
end user never sees because customers purchase your company’s product to
merge in some way with their own software product, a product which the
end user sees.

It is therefore important for you to completely understand who the target
customer is for the product for which you are writing. It may be that the
intended audience for your documentation is end users. Or the audience
might be sophisticated programmers. Or it might be both, depending on
what aspect of the product the customer is using.

• End user

This is a person who interacts with the program, such as through a
graphical user interface or command line interface.

Depending on the product, you might have the expectation that some of
your users could have very little technical knowledge (for example,
users of web browser software) or you might expect that the users are
more skilled (for example, users of graphical software development
environments or high-end 3D modeling software).

It is good for you to consider what minimum knowledge or skill you
expect the end user to have.

• Developer

This is a person who writes software, also called a programmer,
engineer or software engineer.

Depending on the product, you might anticipate that new programmers
will be using it. On the other hand, you might expect only the brightest
programmers or system administrators to even consider touching your
product.

25

Common software documentation tasks2
Software products and their documentation

It is good for you to consider what minimum knowledge or skill you
expect the developer to have.

Software products and their documentation
Software companies sell one or more the following:

• Basic computer programs
• Extendable software
• Applets

Basic computer programs

I consider this the simplest of the tech writing tasks—helping the reader
understand how to use the software.

Consider a web browser. Does the end user need to know what programming
language was used to create that web browser? No. He or she simply needs to
know how to use the buttons and menu options to accomplish a task.

If the software is to be used straight out of the box, you explain these kinds of
things to the end user:

• how to install the software and otherwise prepare the computer
• how to start the software from a command line or icon (this is called

"documenting a command-line expression")
• how to use the program, such as "click this button" and "select this menu

option" (this is called "documenting the graphical user interface"); you
might even provide a tutorial that guides the user through some simple
scenarios in order to become familiar with key aspects of the product

• bits of information that you didn’t get in time to include them in your
formal documentation at print time (which may be called "release notes"
or "readme" files)

• what such-and-such means (perhaps some reference material)

DOCUMENTING JAVA AND C++

26

Extendable software

Software can be written so that a customer’s software can communicate or
interact with it. A Solitaire game on a computer is not designed to interact with
other programs. It is a standalone product. But a web browser is designed to be
flexible and to enable plugins. The latter is an example of extendable software.

Software that a customer can extend

Your company might create software to which its customer can add its own
software.

Imagine that your company sells browser software. The end user sees and uses
the browser on the computer after it has been properly installed.

Further, imagine that other companies can create plugins for that browser. Their
plugins appear to run as part of the browser. When the end user clicks on a link,
he or she might be informed that a plugin needs to be downloaded. Once the
plugin is downloaded and installed, something new appears in the browser or in
a separate window. Visits to links like this one in the future activate that same
plugin. The plugin appears to be part of the browser, working smoothly with it
(or at least, that’s what the plugin company intends).

Note how your company has two kinds of customers in this example: those who
simply use the browser (end users), and those who create software that interacts
with your company’s product (developers), perhaps to enhance the experience for
the other customers, the end users.

How does the developer-customer make its plugin work smoothly with your
company’s browser software? What is required is that your company create and
identify certain programming expressions that others can use to interact or
communicate with your company’s software. These rules of interaction are called
the "API" of the software, the application programming interface.

code

customer’s code

your company’s code

code

27

Common software documentation tasks2
Software products and their documentation

It is your job to understand what those rules are, what those software expressions
are, and present them in an effective form to a programming audience who is
interested in knowing just what they can do with your product and what are the
guidelines for doing it. Such documentation is called API documentation.
"Application" is another word for software or program. "Programming interface"
refers to the way one program interacts with another. Such documentation might
be comprised only of a reference or might also include explanation and examples
of how to use portions of the API to accomplish a particular task.

Software that a customer can incorporate

Imagine your company sells graphics subroutines. They provide basic
functionality such as drawing lines and curves. A video game company might
prefer to buy your company’s graphics subroutines for use in its own software
rather than try to write such subroutines from scratch.

The programmers at the video game company (your company’s customers), need
to understand the rules of interaction of your company’s software, how to make
use of such software within their own software.

Where there are rules of interaction that need to be understood by programmers,
there needs to be API documentation.

Applets

This is a Java concept. There are Java applets and Java applications.

You might think that the "-let" ending of applet means "small" as in "small
application." Well, that’s not true. (Indeed, some applets are huge and some
applications are tiny.)

An applet is a Java program that runs in a web browser. An application is a Java
program that does not require a web browser.

code

code

customer’s code

code
code

your company’s code

DOCUMENTING JAVA AND C++

28

In short, an applet is something that can appear in a web page just like an image.
It occupies a certain width and height within that page.

Just as the tag is for images, so the <APPLET> tag is for Java applets.

Your company might sell applets that customers can include in their web pages.
If your job is to document the applet, most likely you are to explain to the reader
how to use the applet as-is in his or her web page. You would explain the proper
use of the <APPLET> tag and its parameters.

Note that the tech writer probably does not need to know anything about how the
applet was written—the focus is primarily on the proper use of HTML tags. In
this sense, to "document an applet" typically means to "tell the reader how to use
HTML tags to include the applet in a web page."

Knowing your audience

Make a decision

Who will be using your company’s product? For whom should you write your
documentation? Should you assume that your audience will include those with
less skill and try to help them along at every point that could be considered
challenging? Should you assume that only the brave and brilliant will be using
your company’s product and write succinctly and at a high level?

Part of your job is to establish just who the audience is for your documentation
and write accordingly. It may be appropriate to get your software and tech
writing departments to make a decision on this early on so that you are less
tempted to waver and try to take care of a larger audience than your company
intends.

Consider Software A. It was designed to be used by both unskilled users and
skilled programmers. It is appropriate for you to consider just how much help the
unskilled users need to be successful with the software. At the same time, you
don’t want to bore the advanced user who does not want to read through all the
hand-holding details you might provide for the unskilled user.

Consider Software B. It is to be used by advanced users. What should you do
about the less-skilled user who wants to use Software B? Should you try to
dumb-down the documentation just a little bit, just to "take care of everyone," or
should your company decide that, no, the product really is intended for an
advanced audience, and that less-skilled user is on his or her own?

29

Common software documentation tasks2
Knowing your audience

Depending on the simplicity of the product and on your decisions about your
company’s customers, you might choose to provide a single document whose
chapters cover all related topics, or you might choose to break out certain
sections as their own books.

Avoid dumbing down

If your audience is skilled programmers, be realistic about your knowledge
compared to theirs. Realize that they probably know far more than you do about
programming. If your inclination is to write all of your documentation as if your
audience has the same questions and skill as you, that could result in terrible
documentation for your advanced audience.

So, please keep in mind that, by your working through this book, you are
"catching up" with programmers, learning concepts and terms appropriate for
software documentation, terms which they probably know inside and out.

Is it possible to create quality documentation for an advanced audience when you
don’t understand the concepts yourself? I think so! If my audience finds my
documentation effective, I have succeeded, even if I do not fully understand what
what I wrote about.

My practice is to take a tape recorder with me when I am gathering information
from a programmer for my documentation because the programmer is likely to
express many concepts I just don’t have a clue about yet. I transcribe the
recording, rework the phrases into sentences that I think make sense and pass
them by the programmer for comments. If other technical reviewers are available
(for example, quality assurance folks or field engineers), I might get their
responses to the descriptions as well. If they say my descriptions are fine, I may
accept that and move on.

Now, hopefully, you will also come to understand the programming concepts or
details of the software as you become more familiar with the product. There have
been many times when it was weeks, even months, before I understood some
concept I had presented in my documentation. With delight, I’d think, "Oh!
That’s what that means!"

So, establish who your audience is and write clearly, concisely and effectively
for them.

DOCUMENTING JAVA AND C++

30

31

3

Generalized syntax
expressions

In this chapter:

• “A writing convention, not programming,” page 31
• “An example of generalized syntax,” page 32
• “The symbols of generalized syntax,” page 33
• “Replace this placeholder with your own value,” page 33
• “It is up to you whether you supply the item,” page 37
• “Choose one of these,” page 40
• “The item can be repeated,” page 43
• “The optional item can be repeated,” page 44
• “Summary,” page 46

A writing convention, not programming
"Generalized syntax" is a symbolic style of writing, a kind of "short hand." Learn
it and benefit from using it in many forms of communication with programmers.
The remaining instruction in this book also depends on your understanding
generalized syntax expressions.

DOCUMENTING JAVA AND C++

32

Certain keyboard characters, in the context of software documentation, have
special meaning to an audience that is familiar with such symbols. Those
symbols help convey in just a few characters what might otherwise take many
words and examples.

What I present in this chapter is a composite of styles I have seen. You might
discover that your company enforces a variation on what you will learn here. So,
learn the basics from this chapter and then check with your company for its
required style.

Note—While the concepts of generalized syntax are not programming, they
probably will feel like programming as you get used to them and learn the
finer points of how to use generalized syntax expressions effectively.

An example of generalized syntax
You have seen the "Hello! My name is" tag that people affix to their clothing at
gatherings. Certainly, people do not need instructions on how to fill in the tag,
but let’s pretend that you were asked to document the format of the hello tag. If
you know that the word after "is" should be a first name, and more specifically,
the person’s choice of first name, the generalized syntax form would be this:

Hello! My name is <firstName>

The angled brackets around firstName are generalized syntax symbols. They help
the reader understand that the term within the angled brackets represents the
concept of what the reader is to provide in that location in the phrase.

There are many instances in software documentation when we need to tell the
reader what to type to accomplish a particular task. Often, variations are allowed
in what is typed to achieve different results. We have rules in mind for what must
be typed by the reader and what is optional, what can be repeated and what
choices are available. The symbols of generalized syntax help compactly convey
such details.

Beware! Many of the symbols used in the generalized syntax style of writing are
also used in Java and C++ programming and have entirely different meaning in
such contexts. As you read through this section, keep in mind that you are
learning about symbols that can be used in documentation—you are not learning
about programming. (And to underscore this point, I will teach you the symbols
by giving documentation examples that have nothing to do with programming.)

Here are examples of where you might see generalize syntax in use:

33

Generalized syntax expressions3
The symbols of generalized syntax

• in documentation that explains how to start a program from a command
prompt—see "Documenting a program’s command line syntax" on page
161

• in meetings with or emails to writers or programmers who are familiar
with generalized syntax

• in documentation about what text is allowed in a GUI text box
• in documentation that explains the format for the contents of a data file
• throughout this book

The symbols of generalized syntax
The following table summarizes the symbols and meanings of the symbols of
generalized syntax.

Replace this placeholder with your own value

Syntax
<nameOfConcept> or nameOfConcept

There are two ways you can represent a placeholder in your text: either put the
name of the placeholder within angled brackets, or italicize the name of the
placeholder and omit the angled brackets. (Should the italicized version be
courier-italics? That is up to you. I like how the non-courier version stands out.)

The angled bracket form is necessary when you cannot be assured that your
reader can view italics, when it is possible that the reader can only see plain text.
Whichever style you use, use it in all cases throughout your documentation. Do
not mix the two.

Symbol Meaning

< > “Replace this placeholder with your own value,” page 33

[] “It is up to you whether you supply the item,” page 37

| “Choose one of these,” page 40

... “The item can be repeated,” page 43

[...] “The optional item can be repeated,” page 44

DOCUMENTING JAVA AND C++

34

If the concept name is made of two or more words, start the first word with a
lowercase letter and cram the remaining words together after each is started with
a capital letter. (This style of naming is common in programming, as well.)

Meaning

You use a placeholder in a larger generalized syntax expression to communicate
to the reader that that portion of the expression is to be replaced with a value of
the reader’s choosing. The value must be valid for the concept that is identified
by the placeholder name. An example of a placeholder is <firstName> on page
32.

For example, if the placeholder is <firstName>, a valid value is John. If the
placeholder is <number>, a valid value is 12. If the placeholder is <color>, a
valid value is red.

The placeholder name should be crafted to categorize what the reader is to
provide in its place. An adjective in the name can help clarify or narrow the
category. For example, <petName> and <businessName> are clearer than just
<name>.

A placeholder name should not include symbols or punctuation in an attempt to
tell the reader such details as restrictions on values or formatting rules. For
example, if you want the reader to provide a number in place of the placeholder
and that number must between 1 and 10, a proper placeholder is <number>, not
<1-10>. When you recall that the name of a placeholder should be the name of a
category or concept, it is clear that "1-10" is not a name. The expression
<number> within a larger generalized syntax expression conveys that the reader
is to provide a number in that location. The fact that the number must be between
1 and 10 is something you would express in normal sentences after the
generalized syntax expression.

Likewise, these would be invalid placeholders.

<Mary>
<telephone#>
<Mr.>
<firstInitial.>
<0thru5>

Example 1
Hello! My name is <firstName>

35

Generalized syntax expressions 3
Replace this placeholder with your own value

Observations and interpretation

This generalized syntax expression contains one placeholder. The remainder of
the expression is literal text (that is, the reader should type it as-is with no
changes.)

The concept of the placeholder is "first name." Therefore, after typing Hel l o!
My name is , the reader is to type a valid first name, such as Jo hn. A
complete, valid interpretation is therefore this:

Hel l o! My name is J ohn

Should the reader type a period at the end? No, because the original generalized
syntax expression does not include a period after <firstName>.

Example 2
Mar y had a li t tle < noun>.

and

Mar y had a li t tle noun.

Observations and interpretation

This illustrates two ways of saying the same thing. As noted in the Syntax
description, the reason to use one format over the other depends what the reader
will be able to see. (Note that I use both styles in this book as part of increasing
your skill in reading both styles. You should stick with one style in your own
documentation.)

A valid interpretation

Mar y had a li t tle t r ee.

Reverse engineering

So far, the examples have been of completed generalized syntax expressions,
ready for interpretation. Let’s start with the end results and work backwards.

Here are several interpretations, and you need to come up with the generalized
syntax that is valid for all of the interpretations:

DOCUMENTING JAVA AND C++

36

For my vacation, I went to France.
For my vacation, I went to Italy.
For my vacation, I went to the Bahamas.

A simple approach is to look for what is unchanging from line to line. That text
should appear in your generalized syntax with no angled brackets:

For my vacation, I went to

Next, come up with a concept name for the part that changes from one example
to the next. They are all what—Countries? Destinations? Tourist spots? As the
technical writer, you choose the name that you feel best categorizes or reflects
the variations. For example, I will choose "country," thus ruling out places like
California and Disneyland.

The completed generalized syntax expression is therefore this:

For my vacation, I went to <country>.
OR

For my vacation, I went to country.

Here are three sample statements which you wish to turn into a single
generalized syntax expression:

For my vacation, I went to France.
For my vacation, I went to Italy.
For my vacation, I went to the Bahamas.

EXERCISES—PLACEHOLDERS

Answers being on page 297.

Note—Most of the examples and exercises in this chapter are odd. My purpose is
to get you to ignore your sense of "what things should look like" (something
that I have observed can get in the way for some folks) and focus on
understanding the pure meaning of each of the syntax symbols in
generalized syntax.

For each of the following, provide two valid interpretations.

Exercise 1:

5 <letterOfAlphabet> chicken

Exercise 2:

(<bodyPart> <carPart> breakfastItem)

37

Generalized syntax expressions3
It is up to you whether you supply the item

Exercise 3:

lastName firstName

It is up to you whether you supply the item

Syntax
[validExpr]

validExpr can be one or more items, where an item is plain text, a placeholder,
or any other generalized syntax expression.

Meaning

The entire expression within the square brackets is optional. It is the reader’s
choice whether to type the text within the square brackets.

Example 1
I am [very] hungry.

This syntax includes one optional item. The reader can type either of the
following:

I am hungry.

I am very hungry.

Example 2
I am [often] [very] hungry.

This syntax includes two independent optional items. The reader can type any of
the following:

I am hungry.

I am often hungry.

I am very hungry.

I am often very hungry.

DOCUMENTING JAVA AND C++

38

Example 3
I am [often very] hungry.

This syntax includes one optional item that contains two words. The reader either
types both of the words or neither of the words. The reader therefore can type
either of the following:

I am hungry.

I am often very hungry.

Example 4
Mary had a [<adjective>] lamb.

OR
Mary had a [adjective] lamb.

This syntax includes one optional item. That item is a placeholder, shown in both
legal styles.

Some valid interpretations:

Mary had a rectangular lamb.
Mary had a oblique lamb.
Mary had a lamb.

The reader must type Mary had a , then the reader has the option of whether
to type an adjective, and finally, the reader must type lamb .

The adjective "oblique" introduces a problem, a complication with using the
limited set of symbols of generalized syntax. You would want the reader to type
"an" before "oblique." Should this be the corrected syntax?

Mary had a[n] [adjective] lamb.

Unfortunately, since the reader can choose which optional expressions to observe
and which to ignore, a valid interpretation could be this:

Mary had an lamb.

One of the main goals of generalized syntax is to provide as accurate of a
meaning as possible in as short of an expression as possible. When that shorter
expression leaves some ambiguity, simply supplement the single generalized
syntax line with normal sentences, examples, definitions, and so on.

39

Generalized syntax expressions3
It is up to you whether you supply the item

Considering this objective, what would be an effective way of helping the reader
understand when to use "a" or "an" in the prior example? Here is sample
documentation:

Sample Documentation

Mary had a [adjective] lamb.

Note that "a" should be replaced with "an" if an adjective beginning
with a vowel is selected.

Examples:

Mary had a rectangular lamb.
Mary had an oblique lamb.
Mary had a lamb.

EXERCISES—OPTIONAL PART

1. "Reverse engineer" to provide a generalized syntax expression for these
address examples. Provide additional description or examples as needed to
help the reader.

124 Main St.
23 Schrader Ave. #14
14882 Candlewick Blossom #102
750 Hampton Plaza

These are all addresses. Some have an apartment number, some do not.

Hint: Since there are no common characters from line to line, there will be
nothing literal in the solution—all items will be placeholders.

2. Interpret the following syntax:

5 <letterOfAlphabet> [chicken]

3. Interpret the following syntax:

5 [<letterOfAlphabet> [chicken]]

DOCUMENTING JAVA AND C++

48

PAGES OMITTED FROM THIS SAMPLE DOCUMENT

49

PART 2
Programming concepts

These chapters present the fundamental concepts of programming that you
should understand if you are to document C++ or Java.

Chapters in this section:

• “Background,” page 51

This chapter presents the concepts of source code and compiling and shows
what source code comments look like.

• “Datatypes and data structures,” page 59

Programs create and manipulate information. Datatypes and data structures
are the means of storing such information. You need to be familiar with the
basic datatypes and data structures provided with Java and C++.

• “Object-oriented programming,” page 79

Object-oriented (OO) programming is, in some ways, a philosophy, an
approach when writing software. You must know certain concepts of OO
programming to know what to document and why to document it.

• “Syntax,” page 93

This chapter presents the Java and C++ ways of expressing the OO concepts
of the prior chapter. This chapter teaches what the code expressions are and
how to find them in code by looking for certain patterns. You should know
how to find each of these items when looking through source code.

DOCUMENTING JAVA AND C++

50

• “Modifiers,” page 129

Modifiers are code expressions which modify the definition or behavior of
other code expressions. Modifiers are mentioned through the chapter on
Syntax. This chapter explains the modifiers.

• “Interfaces,” page 139

This chapter elaborates on the concept of a Java interface.

• “Package topics,” page 145

This chapter explains packages and package statements, import statements,
and the CLASSPATH system variable.

51

4

Background
In this chapter:

• “From source code to executable,” page 51
• “Common elements of programs,” page 53

From source code to executable

Source code

A programmer creates a text file (human-readable) that has programming
expressions. These expressions tell the computer what information is to be stored
and retrieved and modified, and in what sequence these events should happen.
The text file that contains the programming expressions is called the source file.

For example, these lines from a Java program store the number 5 in a variable
named numFingers and print the value of numFingers :

int numFingers = 5;
System.out.println(numFingers);

In Java, the name of a file containing source code ends with .java , as in
Card.java . In C++, a source code file name ends with .cpp or .h .

DOCUMENTING JAVA AND C++

52

The programmer uses expressions that conform to a specific programming
language, such as Java or C++. Each programming language has its own way of
expressing how to store information and how to do common tasks, such as repeat
an event and decide whether or not a certain event should occur. (If you have not
yet learned a programming language, you will likely find that it is hardest to
learn the first language you select. It is far easier to learn the same concepts in
another programming language since you only need to how to express those
concepts in that particular language.)

Compiling

The programmer then uses a compiler to compile the source code. The compiler
is software that interprets human-readable source code and generates expressions
intended for the computer (and therefore not readable by most humans).

Bytecode, executables and library files

In Java, the compiled result is called bytecode and is in a new file whose name
ends with .class . In C++, the compiled result is typically either an executable
file (a program) or a library file (a set of routines available for other programs to
use) and is in a file whose name end in one of many ways, depending on the
platform and the purpose of the source code (.exe , .dll , .com , .so , etc.).

Machine-dependent or not?

A C++ program is written with a particular platform in mind. (A platform is a
particular combination of operating system and machine, such as Windows 2000
on an IBM PC.) When the C++ program is compiled, the executable only runs
on that platform. If the programmer wants to see the same results on a different
platform, he or she must use different programming expressions and compile for
that platform.

In contrast, most Java source code can be written without considering what
platform it might eventually be run on. Compiling a Java program creates
bytecode. The information in the bytecode is specific enough to say what the
program will do, but not specific enough to work on any platform. In this sense,
it is platform-independent—it can be run on any platform. But something extra is
needed for it to run: a Virtual Machine.

53

Background 4
Common elements of programs

Virtual Machine

Virtual Machine (VM) is the Java name for software whose job it is to read the
generic bytecode and translate it so it runs on a selected platform. This is needed
because different platforms have different ways of storing data, different ways of
displaying information on the monitor, etc. (Indeed, that is why the C++
programs are different for each platform.)

A VM has been created for all the common platforms. It has even been made
part of the popular web browsers. Have you visited a web site and seen a
message about "loading Java"? It appears in response to your viewing a web
page that needs to run bytecode. The bytecode is downloaded from another
location, and the VM on your computer is "loaded" or started up so that it can
interpret the bytecode and make the Java program run.

Definitions

These terms have been defined in the Glossary for your future reference: Source
code, Compiling, Executable, Bytecode, Operating system, Platform, Virtual
Machine.

Common elements of programs

Comments

A programmer can add comments to the source code. Comments help explain the
purpose of anything from a single line of code to the overall program. Such
comments can be of help to the programmer or to whoever may look at the code
in the future, including the tech writer.

The compiler knows what comments look like and ignores them when compiling
so that they are not part of the compiled results.

Various styles of comments are allowed in C++ and Java.

Style 1: double slash

Examples:

// only the stuff to the end of the line is a comment
int x = 5; // store 5 in the variable x

DOCUMENTING JAVA AND C++

54

When the compiler encounters the double slash, it knows that the double slash
and everything to the right of it is a comment and can be ignored. Note that the
comment ends at the right end of the line. In the example above, the compiler
only compiles this much:

int x = 5;

If you decided the first comment expression was too long for one line, perhaps
you’d split it onto a second line, like this:

// only the stuff to the end of the line
is a comment

What needs to be done to ensure this is still a comment? It needs its own pair of
slashes before "is a comment". Otherwise, the compiler would gag, since it
wouldn’t know what "is a comment" means.

Style 2: slash-asterisk, asterisk-slash

Example:

/* whatever is between the pair is treated by
the compiler as a comment */

When the compiler encounters the opening slash-asterisk, it looks for the first
asterisk-slash after that. Everything between and including the pair is ignored by
the compiler. The style 2 comment can span several lines (even the whole
program, if the programmer so chooses).

What parts of this example makes it a style 2 comment?

/***** wow *****/

Only the first two and last two characters. All of the other asterisks are just part
of the comment. They help make the comment look "pretty".

Many programmers use style 2 in the following way to create a marquee-like
introduction to a key part of their program:

/**********
*
* www.phoons.com
*
**********/

Again, only the first two and last two characters make it a style 2 comment. All
the rest is fluff.

55

Background 4
Common elements of programs

Another common use of style 2 is to "hide" lines of programming code
temporarily. Imagine a program has these lines of code:

int x = 5;
int y = 5;

Now imagine that the programmer wishes to try some different programming
expressions in place of these two, yet does not wish to lose the original lines.
One solution is to use the style 2 comment symbols around the original lines, and
provide the new lines after the comment. The result is that the original lines are
still visible for the programmer to compare with the new, yet they are hidden
from the compiler.

/*
int x = 5;
int y = 5;

*/
int x = 25;
int y = 25;

The example below will not compile. Can you figure out why? The programmer
originally had two lines (the comment about 50 and the line that stores 50 in z).
He then decided to hide both lines by adding additional style 2 comment tags
around both lines.

/*
/* 50 is the minimum temperature */
int z = 50;

*/

Here is a question to help you determine the cause of the prior bug: Which
closing tag does the compiler encounter first, when trying to find a match for the
first opening tag?

Style 3: slash-asterisk-asterisk, asterisk-slash

Example:

/** Assigns the value of the input variable to x. */
void setX(int input) {

x = input;
}

DOCUMENTING JAVA AND C++

56

You can see that this is simply a style 2 comment with an extra asterisk. As you
learned about style 2 comments, that extra asterisk is treated as part of the
comment and is ignored by the compiler. So why have a style 3 comment?

There are programs such as javadoc and doxygen which scan the source
code, looking for:

• class members
• style 3 comments above such members

These programs then construct documentation (in formats such as HTML and
FrameMaker) that lists the members and the comments associated with those
members. Such documentation is called API documentation. As you might guess,
that means that the quality and readability of such documentation depends on the
quality and readability of the style 3 comments in the source code

As will be discussed in more detail later in "Documenting the API of software"
on page 175, a tech writer can use a program like javadoc to gather information
from source code to use as the basis for API documentation or as a cross-check
of the tech writer’s work.

For more information on javadoc, see

ht t p: // j ava.s un. com/ pr oduct s/j dk/ j avadoc/

Expressions

Semicolons and spaces

As you look through source code, you will see many semicolons (;). The
compiler uses them to determine where one programming expression ends and
the next begins.

If a programmer wanted, he or she could type an entire program on one really,
really long line, because the compiler is not interested in appearance but rather in
isolating expressions. Thus, this first sample:

/* * * * * wow ** * **/ i nt x = 5; i nt y = 5;

is no different to the compiler than this sample:

/* * * * *
wow
* * * * */

57

Background 4
Common elements of programs

int x
= 5;

int y = 5;

A programmer uses blank lines, spaces, tabs and carriage returns primarily for
human readability.

Braces

You will also see many braces. They are always paired. And they can be nested.
Typically, the expressions within a pair of braces are indented the same amount.

Note the two pairs of braces in the following example:

while (x > 5) {
x = x - 1;
y = y + 2;
for (int i = 0; i < 4; i++) {

System.out.println(i);
}

}

59

5

Datatypes and data
structures

The basis of programming is storing, modifying and retrieving information. Each
programming language, such as Java, C++ FORTRAN and BASIC, provides a
way for the programmer to store information. The form in which each bit of
information is stored is called its datatype or, in more complex cases, its data
structure. This chapter presents these concepts.

In this chapter:

• “Datatypes,” page 60
• “Declaring a variable,” page 65
• “Assigning values to variables,” page 67
• “Data structures,” page 69
• “Pointers,” page 76

Where does this chapter fit in the big scheme of things? Why read it at
all? See "The importance of various topics" on page 21.

DOCUMENTING JAVA AND C++

60

Datatypes
The basis of programming is storing, modifying and retrieving information. Each
programming language, such as Java, C++ FORTRAN and BASIC, provides a
way for the programmer to store information.

The form in which each bit of information is stored is called its datatype or, in
more complex cases, its data structure.

We will discuss these means of storing information:

• primitive datatypes
• data structures:

• arrays
• structs
• classes

Primitive datatypes

The simplest or most primitive types of information a programmer needs to store
are whole numbers, numbers with decimal points and text. The programming
languages provide "primitive datatypes" for these basic types of information.

The main objective here is for you to become familiar with the primitive
datatypes listed in the tables below. Such primitives are used extensively
in the remaining chapters of this book to illustrate more advanced
programming topics. Thus, the more recognizable these items are as
primitive datatypes, the less of a hindrance they will present to you as you
move to other programming concepts.

In the end, precise understanding of the datatypes is not essential, for you
will simply copy/paste datatypes information from source code into your
documentation in a form that is more easily digestible by your reader, as
presented in the chapter "Documenting the API of software" on page
175.

61

Datatypes and data structures5
Datatypes

Primitive datatypes in C++

The number of bytes occupied by each datatype depends on the operating system
and hardware.

Primitive datatypes in Java

The primitive datatypes store the basics: numbers and characters.

Note—The datatype for storing text is String . (It is a class and therefore not a
primitive datatype, but it is worth mentioning now because of the common
need to store text.)

byte whole number (char can be a single character)

short

char

int

long

float decimal number (not as accurate as double)

decimal number (most accurate)double

bool or
boolean

true or false

char * often used for text

datatype what it stores memory it
occupies

byte whole number (+/- 128) 1 byte

short whole number (+/- 32768) 2 bytes

char whole number (+/- 32768) or single character
(’t’)

2 bytes

int whole number (+/- 2,000,000,000) 4 bytes

long whole number (+/- 9 with 18 zeros) 8 bytes

float decimal number (not as accurate as double) 4 bytes

double decimal number (most accurate) 8 bytes

boolean true or false 1 byte

DOCUMENTING JAVA AND C++

62

About the primitive datatypes

Several datatypes are provided for storing a whole number. The ones listed here
are listed in order of the size of whole number each can store.

A byte , for example, occupies a single byte of memory in the computer. The
biggest number it can store is 128. (There are more technical details and
variations, but those don’t matter for our discussion. Just note for now that it’s a
smaller number than can be stored in the other datatypes for whole numbers. And
feel free to get the fine details from a programming book.)

A short is 2 bytes in size. It occupies twice the memory of the byte datatype,
yet it is capable of storing a number as large as 32,000. (Here’s where you either
recall your training in the binary or you allow it to be one of those magical
mysteries about a computer.)

In C++, the amount of memory for some datatypes depends on the operating
system. With one, an int might occupy 8 bytes. On another, just 4. On another,
16. (A 4-byte int can store numbers as large as 2 billion. You can imagine that
a 16-byte int can store a whopping huge number.)

In Java, an int is always 4 bytes, regardless of operating system.

The char datatype stores numbers of a certain size. As it turns out, single letters
are represented as numbers in a computer. As the datatype name suggests, a
char can store a character (not a word—just a single character). In the
programming world, char is pronounced "char," not "care."

The float and double datatypes are for numbers that have a decimal point. A
float is less accurate to the right of the decimal point than a double .

The boolean datatype can store only one of two things: the word true or the
word false . (Neither word has quotes.)

C++ specifics

Text is stored with char * . Text typically appears in quotes within a program.

C++ has many possible variations of the primitive datatypes through use
of additional keywords like unsigned . Thus, unlike Java, datatypes can
be more than one term. Further, C++ datatypes can include one or more
asterisk, meaning pointer.

A skill you should develop with C++ is recognizing the datatype portion
of an expression.

63

Datatypes and data structures5
Datatypes

Why is "char *" the dataype for text? To explain requires some background. The
combination of a datatype and an asterisk is called a pointer and represents the
computer memory address of the first byte of memory occupied by a chunk of
information (see "Variables and memory" on page 66).

It is pronounced with the rhyming sounds "char star" in the programming world
(and not "care star" or "car star"). It is also referred to as a "pointer to char " or
"char pointer."

Letters of a word or phrase are typically stored as individual characters, char s,
in adjacent bytes of memory. The C++ compiler treats "char *" as the string of
characters beginning at the address stored in the "char *" variable.

Pointers can be used on any datatype. Here are a pointer to int and a pointer to
Card (a playing card from a deck):

int *
Card *

A pointer to Card would the beginning of the region of memory that is occupied
with information about a particular card.

Thc C++ language comes in various flavors. Several companies and
organizations have written their own variations. On top of that, there can be
differences based on the operating system (for example, Mac versus Windows
versus Unix).

Most versions include additional keywords. One is unsigned . When this
keyword is combined with various datatypes, the resulting two-word datatype
means "this datatype is restricted to store only positive numbers."

For example:

unsigned short
unsigned int

Trivia: unsigned , when used by itself in source code, is shorthand for
unsigned int .

And there are some additional combinations:

short int // same as short
long int // same as long
long double // can be larger than double, dep on lang

DOCUMENTING JAVA AND C++

64

It is not important that you understand all these variations. When documenting
variables, you simply copy/paste the datatypes you find in the source code into
your documentation. Basically, you are just passing on the information to your
reader who knows their meaning. The important angle for you is how to present
the information effectively, as is described in the chapter "Documenting the API
of software" on page 175.

Java specifics

Text is stored in String objects. Text typically appears in quotes within a
program.

Why choose one datatype over another?

If a program will be storing thousands, even millions of bits of information,
memory might become very, very precious to the programmer. The programmer
would probably then choose the smallest-sized datatype for storing the
information. For example, the number of cans in a coke machine is likely to be
less than 200, so byte would be a better choice than int since it occupies 1/4
or less of the memory of an int .

For a smaller program, however, the programmer might not care how much
memory is taken up by little bits of information here and there. The favorite
datatype among programmers for whole numbers in such cases appears to be
int .

The computer representations of decimal numbers (or "floating point" numbers)
in a float or double are nothing like the datatypes for whole numbers. Size in
memory does not determine how large of a number can be stored in either
datatype. Rather, it determines how accurate the number is. You can count on
bank software and satellite software using doubles to be as accurate as
possible.

In Java, int is the default representation for a whole number and double is the
default representation for a decimal point (or "floating point") number. That is, if
you tell the computer to add 4.56 and 6.78 , it treats both as doubles and
gives back the answer in the form of a double . If you insist on the values being
floats , you add an f after each number: 4.56f and 6.78f .

65

Datatypes and data structures5
Declaring a variable

Declaring a variable

A datatype and a name

Once a programmer has identified the appropriate datatype for a bit of
information, he or she must choose a name by which the information is to be
known within the program. For example, he or she might choose "phoneNum"
for the text of a phone number of the user, and "amtChange" for the decimal
amount of change in the user’s pocket.

For the computer to know that phoneNum is text and amtChange is a decimal
number, the programmer must formally declareeach as a variable.

To "declare a variable" is to put a choice datatype and name together, once.
From then on, the compiler will know that name is of type datatype.

datatype name;

Note—I am using generalized syntax here to represent programming concepts.
Please refer to "Generalized syntax expressions" on page 31 as needed.

Here are several variable declarations:

int population;
float cost;
double satelliteSpeed;
boolean isUSCitizen;

That is, population is the name chosen for an int that will store a whole
number of people, cost is the name of a float that will store the price of
something, satelliteSpeed is the name for a decimal number, and
isUSCitizen is the name for a variable that can contain either the value
true or false .

From now on, the computer will know that the name satelliteSpeed refers
to a place in memory that can store a double . Depending on the programming
language, that place in memory is empty or is assigned a default value like 0, 0.0
or false , depending on the datatype.

DOCUMENTING JAVA AND C++

66

Naming conventions

The C++ and Java programming languages are case-sensitive. You can name one
variable population and another Population and the program will know
they are different.

When it comes to inventing variable names, you can choose whatever letters and
case you want. You could use pOpULaTion , as long as you stick with that form
every time you refer to the variable.

There are various preferences out there regarding how to name variables. The
most popular is to start variables with a lowercase letter and use uppercase for
the first letter of adjoining words.

Declaration styles

You have seen the style of datatype name, as in:

int population;
int numTrees;

An alternate style is to combine same-datatype variables into a single declaration
line. The datatype appears once. Names are separated by commas.

int population, numTrees;

Variables and memory

When the programmer declares population to be an int , the computer sets
aside enough memory for that int to be stored, notes that that memory
represents an int (and not a double or boolean) and records the starting
address of that memory.

67

Datatypes and data structures5
Assigning values to variables

Pretend that the computer chooses memory location x45F3 as the start of the
int in memory, and assume that an int occupies 4 bytes on this computer. I
have represented a portion of the bytes in memory by a grid.

My understanding is the computer maintains a lookup table. Whenever the
programmer uses the name population , the computer looks in its table and
finds that population is the nickname for the int stored at location x45F3 .
In effect, the programmer can consider the name of the memory location to be
population . The computer does the job of translating that into the address
x45F3 .

Now, what does the word "variable" mean? Well, since population refers to a
location in memory, and the information stored at a location in memory can be
changed or varied, "variable" is a suitable concept name; population is a
variable whose value can be changed.

EXERCISE—DATATYPE AND NAME

What datatype and name would you use for each of the following concepts?

whether exact change is required
body temperature of 98.6
street address (answer for Java, then for C++)

Assigning values to variables
A variable is declared so that information can be stored in memory. To store
information, information must be assigned via variable name:

name = value;

x45F3

name used
by programmer

location in
memory

population x45F3

datatype
stored there

int

DOCUMENTING JAVA AND C++

DOCUMENTING JAVA AND C++

176

• “About code samples,” page 211
• “Documenting functions that are not members of classes,” page 212

The essential elements for a programming
audience
As a programmer, I often need to look up information in API documentation. I
know what kind of information I am looking for when browsing such
documentation. And as a technical writer, I have a sense of what would make it
easier for a programmer to find such information.

When a programmer is reading API documentation, he or she is looking for
certain details about a class or class member. The focus of this chapter is on the
essential elements that must be presented for each class or class member.

I also suggest styles for documenting classes and their members. They are, for
the most part, suggestions. While I might show indentation or bulleted lists or
certain fonts, I don’t expect that you should or will match such presentation
details. The focus is on the details which should appear somehow in some
fashion, and I give examples on how such details might be presented.

Should you adhere to my style? Actually, there are some style details that I
consider essential, and I point those out along the way, helping you understand
why they are essential. Other than that, however, use whatever presentation style
reflects your understanding of the essential elements of API documentation.

At the end of the chapter, I review three documents written by three authors on
the same topic, helping you see the positives and the negatives of each approach
style in light of your knowledge of the essential elements that should appear in
API documentation.

Gathering information

Reviewing the code

If you do not have access to the source code on your work computer, by all
means get it. If your role is to document source code, you should be allowed
access, even if it is read-only access or you have a copy of the source code.

177

Documenting the API of software14
Gathering information

You might find the following tasks helpful:

• On a printout of the class source code, highlight the line that identifies the
class, and highlight all public members of the class.

Typically, companies let customers know only about the public members of
a class. Therefore, assuming that you will only be documenting the public
members and be prepared to check this assumption with the developer.

In some cases, the raw source code is also provided to the customer, so it
doesn’t matter if the members are public or not since the customer can look
at the code.

If it is Java code and you find members with no access modifier such as
public , make note to ask the developer if any of those members should
actually be public and therefore be documented. (It could be that the
programmer forgot to include the access modifier.)

If it is C++ code, perhaps there are header files that can give you an initial
sense of what needs to be documented. See "About header files (C and C++
only)" on page 179.

• If you find it helpful, make note of which members are variables,
methods, functions, destructors or constructors.

• If a member is marked static , circle static to distinguish this
member from non-static members. If you use the styles of this chapter,
you will document static members separately from non-static members.

Questions for the developer

With printouts in hand, visit your developer and ask a few questions:

• Are the members that you have highlighted what are to be documented?

It could be that some of the public members should not be documented.
(There can be public members which the developer believes the customer
should neither use nor know about.) It could be that some of the non-public
members should be documented.

• Will the customer receive the source code for this or any other class?

If yes, the customer sees every member, whether public or private.
Considering that, should you document just the public members or all
members?

• Should any nested classes be documented (if it is Java code)?

DOCUMENTING JAVA AND C++

178

My guess is that you will not document any nested classes.

• Should main() be documented (if found) for its command line syntax?

You should not document main () as you would document other functions
or methods. main () has a special purpose. It enables the compiled code to
be started from a command line, and other programmers know this. So, if
you find a function or method named main (), you should ask the
programmer if command line documentation is needed for that code. (It
could be that the programmer simply added a main () to that code for
personal testing of the code and expects no documentation of it.)

Dealing with descriptions

Eventually, you will need to provide a description for the class and each of its
members that you document.

If you are lucky, you can find helpful comments near the members in the source
code that you can use when developing your first-draft description of the
member. Such comments traditionally precede the line of code to which they
refer.

As I develop my documentation, I like to use {{ }} to surround notes to myself,
notes to the developer or incomplete descriptions. For example:

int numCtx -- {{need description}}

This approach helps in a couple ways:

• I can convert my FrameMaker documentation to text, use a tool like
Unix’s grep or the Windows tool TextPad (visit www.textpad.com) to
print out a list of all lines containing {{ }}, and have a nice list of what is
left for me to correct or research.

• I can print the API documentation and highlight the {{ }} items for which
I need answers from the developer.

About javadoc and doxygen

Programs are available which search through source code and create API
reference documentation. In addition to identifying the members and their
modifiers, they search for comments of a given format and include the text of
such comments in the API reference documentation.

179

Documenting the API of software14
Gathering information

javadoc is available for use with Java source code. When you download the
free Java 2 SDK from Sun Microsystems, you get javadoc , too. A program
available for C++ source code is doxygen .

Considering that programs like javadoc create API reference documentation,
you might have questions like the following:

• "If javadoc creates API reference documentation, what point is there in
my continuing to learn about how to create API reference documentation?
Why shouldn’t I just use javadoc and spare myself the effort?"

javadoc does not provide all of what I consider the required elements of
effective API reference documentation (at least at the time I am writing
this).

Further, the output of javadoc is only as good as the text found in the
comments. Were the comments written by programmers? For programmers
with technical writers in mind? The output will certainly be best if the
comments were written by those skilled in the written language and who
understand the required elements of API reference documentation.

• "My company is thinking about just using javadoc or doxygen to
create its API documentation. Is that a good idea?"

It could be that your company got this idea from programmers who do not
appreciate the value of technical writers in the creation of API
documentation. Management might not be aware of the consequences of
compromised documentation and needs your input.

Or it could be that the project is under time or financial pressure and
someone noted that the use of javadoc could be faster or cheaper than
going down the traditional technical writer path. That might be appropriate.

Help your management consider the alternatives and consequences. Do
what you can to help your company make the right decision.

• "If I learn how to create API reference documentation as presented in this
chapter, will javadoc be of any benefit to me?"

Absolutely. I find javadoc output to be an excellent starting point in my
gathering of information about a class. I might copy/paste its content into
my own documentation.

• "Can javadoc generate output in formats other than HTML?"

DOCUMENTING JAVA AND C++

180

Sun Microsystems designed javadoc so that others could extend it to
generate other formats. if you search the web, you will find companies
whose code generates formats such as .doc, .rtf, and .xml. Sun
Microsystems provided an unsupported solution that generates MIF files in
a format similar to standard javadoc output.

I came up with a solution based on javadoc , one which generates HTML
or MIF files in the style that I present in this chapter and which uses the
customer’s FrameMaker paragraph tags, thus bypassing deficiencies I have
found with the standard javadoc output. Using this solution makes it
possible for a company to generate nearly perfect FrameMaker
documentation directly from the Java source code, significantly shortening
the documentation process for medium to large documentation tasks.

Document design

Design

If you are documenting classes or interfaces, their names become the first level
headings within the chapter.

If you are documenting functions that are not in classes (C or C++), the function
names become the first level headings within the chapter. See "Documenting
functions that are not members of classes" on page 212.

Details before summaries

We work on summary sections after we have filled in enough details to be able to
create summaries.

For example, we identify the classes that are to be in the chapter before
introducing them at the start of the chapter. And we complete the details about
their members before we create summary tables that list those members.

Notation

I use expressions like [H1] and [H2] in this chapter to signify heading levels, not
the generalized syntax concept of "optional."

181

Documenting the API of software14
API documentation template

[ChapTitle] - chapter title (only one per chapter)
[H1] - first level heading within chapter (one

for every class or interface)
[H2] - next level heading within H1

[H3] - next level heading within H2
[H1] - next class or interface within chapter

Note—I am not suggesting you create documentation that matches the
indentation you see in the samples in this chapter. Such indentation is just a
teaching tool I use to help you see the heading levels and details.

API documentation template
The details of this template are presented in the remaining sections of this
chapter.

[ChapTitle] title
introToLinks
bulletedLinksToH1s
[H1] className| interfaceName| OuterClassName.NestedClassName

Package: packageName|none (Java only)
classSyntaxLine
description
[H2] Constructor[s] Summary

summaryTable
[H2] Class Variable[s] Summary

summaryTable
[H2] Instance Variable Summary

summaryTable
[H2] Class Method/Function[s] Summary

summaryTable
[H2] Instance Method/Function[s] Summary

summaryTable
[H2] Destructor Summary (C++ only)

summaryTable
[H2] Nested Class Summary (Java only)

summaryTable
[H2] Constructor(s)

[H3] shortenedHeading
description
syntax

DOCUMENTING JAVA AND C++

182

argDocumentation
[H2] Class Variable[s]

[H3] variableName
syntax-- description

[H2] Instance Variable[s]
[H3] variableName

syntax-- description
[H2] Class Method/Function[s]

[H3] shortenedHeading
description
syntax
argDocumentation

[H2] Instance Method/Function[s]
[H3] shortenedHeading

description
syntax
argDocumentation

[H2] Destructor (C++ only)
[H3] shortenedHeading

description
(syntax not needed)

[H2] Nested Class[es] (Java only)
[H3] OuterClassName.nestedClassName

[H1] nextClassName
(etc.)

As noted in "Issues of variables versus constants" on page 188, you might
choose to present your variables and constants under a different heading than
shown above.

Introducing a chapter
At some point, you need to decide which classes and interfaces should be in the
same chapter. Perhaps they are related by purpose or task. Perhaps they are
related by package (Java only). Ask your programmer for his or her opinion.

Required elements

The chapter needs:

183

Documenting the API of software14
Introducing a class or interface

• a chapter title that is representative of its contents
• a list of the classes or interfaces presented in the chapter

Style

[ChapTitle] chapTitle

introduction to list of [H1] links

• link to text of first [H1]
• link to text of next [H1]

Comments about the style:

• The introduction is a standard tech writing way of saying, "Here are the
main headings within this chapter." You might also explain why the
selected classes or interfaces are in the same chapter.

• A bulleted list is a standard tech writing way of listing the major headings
of the chapter (which are, in this case, the names of the classes or
interfaces).

Example

[CH] {{ask developer}}

This chapter provides details about the following classes:

• Hashtable
• Vector

Introducing a class or interface

Required elements

The reader needs to know:

• the name of the class or interface
• whether the class or interface belongs to a package and what the name of

the package is (Java only)
• the name of the parent class or interface, if this class is a subclass

DOCUMENTING JAVA AND C++

184

• a description of the class

Style

[H1] className | interfaceName | OuterClassName.NestedClassName

Package: packageName|none (Java only)

syntax (everything up to but not including "{")

description

Comments about the style:

• The heading identifies the class (or interface or nested classname) by
name.

• The heading does not include the words "class" or "interface" or "nested
class" (that is, the heading is "Dog", not "Class Dog" or "Dog class").

• In the unlikely case that the Java code has no package statement, make
that clear.

• The syntax is copied directly from the source code to the syntax portion of
the section. As a result, it includes key details about the class’s inheritance
and access modifiers, thus taking care of a few required elements in one
line. The syntax is everything up to but not including the opening curly
brace of the class.

• Programmers are paid to read code. If the syntax includes an expression of
inheritance, the programmer will immediately understand it, even if it is
currently difficult for you as you are "catching up" in programming
knowledge. You do not need to provide a separate explanation of
inheritance.

• One class might have one line of description while another has a full page
of description. Therefore, description should be last, so that the package
and syntax details are easy to find at the top of the section.

Examples

In these examples, the name of the class is clear, the package information is easy
to find, inheritance is communicated in the syntax, and a description introduces
the class.

185

Documenting the API of software14
Documenting a variable declaration

Java

[H1] Dog

Package: prog.animals

public class Dog extends Mammal

The Dog class represents all dogs, regardless of breed.

C++

[H1] Dog

class Dog : public Mammal

The Dog class represents all dogs, regardless of breed.

Documenting a variable declaration
Note the structure for documenting variables:

[H1] className
[H2] Class|Instance Variable[s]

[H3] variableName

The class name is an [H1] heading. [H2] is for member categories within the
class, such as Class Variables, Instance Methods, Constructors and so on. Thus,
[H3] is for specific members within a category.

Let’s focus on documenting the variable at the [H3] level first, and then we will
look at the [H2] heading.

Required elements

The reader needs to know:

• the name of the variable
• the modifiers and datatype of the variable
• the description of the variable, including its purpose, any restrictions on

its use, etc.

